Three-Dimensional Au Microlattices as Positive Electrodes for Li-O2 Batteries.

نویسندگان

  • Chen Xu
  • Betar M Gallant
  • Phillip U Wunderlich
  • Timm Lohmann
  • Julia R Greer
چکیده

We demonstrate the feasibility of using a 3-dimensional gold microlattice with a periodic porous structure and independently tunable surface composition as a Li-O2 battery cathode. The structure provides a platform for studying electrochemical reactions in architected Li-O2 electrodes with large (300 μm) pore sizes. The lack of carbon and chemical binders in these Au microlattices enabled the investigation of chemical and morphological processes that occur on the surfaces of the microlattice during cycling. Li-O2 cells with Au microlattice cathodes were discharged in 0.5 M lithium-bis(trifluoromethane)sulfonamide (LiTFSI) in a 1,2-dimethoxyethane (DME) electrolyte, with lithium metal foil as the anode. SEM analysis of microlattice cathodes after first discharge revealed the presence of toroidal-shaped 500-700 nm particles covering the surface of the electrode, which disappeared upon subsequent charging. Raman and FTIR spectroscopy analysis determined these particulates to be Li2O2. The morphology of discharge products evolved with cycling into micrometer-sized clusters of arranged "platelets", with a higher amount of side reaction products such as Li2CO3 and LiOH. This work shows that properly designed 3-dimensional architected materials may provide a useful foundation for investigating fundamental surface electrochemistry while simultaneously enabling mechanical robustness and enhancing the surface area over a factor of 30 compared with a thin film with the same foot print.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Au-coated carbon cathodes for improved oxygen reduction and evolution kinetics in aprotic Li–O2 batteries

a r t i c l e i n f o Keywords: Li–O 2 battery Rate capability Au-coated electrodes ORR/OER kinetics Metal-oxygen systems are an attractive option to enhance the specific energy of secondary batteries. However, their power is limited by the oxygen electrode. In this communication we address the issue of the sluggish kinetics of the oxygen cathode in the aprotic Li–O 2 batteries. The electrochem...

متن کامل

High‐Performance Li–O2 Batteries with Controlled Li2O2 Growth in Graphene/Au‐Nanoparticles/Au‐Nanosheets Sandwich

The working of nonaqueous Li-O2 batteries relies on the reversible formation/decomposition of Li2O2 which is electrically insulating and reactive with carbon and electrolyte. Realizing controlled growth of Li2O2 is a prerequisite for high performance of Li-O2 batteries. In this work, a sandwich-structured catalytic cathode is designed: graphene/Au-nanoparticles/Au-nanosheets (G/Au-NP/Au-NS) tha...

متن کامل

A structured three-dimensional polymer electrolyte with enlarged active reaction zone for Li–O2 batteries

The application of conventional solid polymer electrolyte (SPE) to lithium-oxygen (Li-O2) batteries has suffered from a limited active reaction zone due to thick SPE and subsequent lack of O2 gas diffusion route in the positive electrode. Here we present a new design for a three-dimensional (3-D) SPE structure, incorporating a carbon nanotube (CNT) electrode, adapted for a gas-based energy stor...

متن کامل

Ald - Enabled Cathode - Catalyst Architectures for Li - O 2 Batteries

Title of Dissertation: ALD-ENABLED CATHODE-CATALYST ARCHITECTURES FOR LI-O2 BATTERIES Marshall Adam Schroeder, Doctor of Philosophy, 2015 Directed By: Professor Gary W. Rubloff Minta Martin Professor of Engineering Department of Materials Science and Engineering Institute for Systems Research The Li-O2 electrochemical redox couple is one of the prime candidates for next generation energy storag...

متن کامل

Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries

The electrochemical performance of lithium-oxygen (Li-O2) batteries can be markedly improved through designing the architecture of cathode electrodes with sufficient spaces to facilitate the diffusion of oxygen and accommodate the discharge products, and optimizing the cathode catalyst to promote the oxygen reduction reaction and oxygen evolution reaction (OER). Herein, we report the synthesis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 2015